NeoPhotonics Corporation announced that it has used its Indium Phosphide-based Coherent Receiver and Coherent Modulators, coupled with its Ultra-Narrow Linewidth Tunable Lasers or Distributed Feedback Lasers, to demonstrate 120Gbaud operation in applications ranging from 800G LR transmission to 400G long haul transmission. The next-generation DSP baud rate will be based on 120+ Gbaud, and potential applications include 800LR (=10km), 800ZR for DCI (=100km), 800ZR+ for metro-core (=1000km), and 400Gb/s ultra-long-haul transmission. Demonstrations of this level of performance are reported and listed below, showing that corresponding high-speed optoelectronic components are available to match the DSP baud rate and to enable pluggable or embedded modules at these data rates.

Using its indium phosphide (InP)-based coherent driver modulator (CDM) and intradyne coherent receiver (ICR) with more than 60GHz-bandwidth, NeoPhotonics has experimentally demonstrated the feasibility of the following transmission systems at 120+ Gbaud: Long-haul: 400Gb/s over 1500km standard single-mode fiber EDFA-only transmission system with a superior required OSNR of 16.7dB at OFEC threshold; Regional/Metro-core: 800Gb/s (with probabilistic shaping) over 1000km standard single-mode fiber EDFA-only transmission system with a superior required OSNR of 24.3dB at OFEC threshold; ZR DCI: 800ZR over a single-span EDFA-based 100km standard single-mode fiber with a superior required OSNR of 25dB at OFEC threshold and a transmitter output power of -6dBm; and Unamplified LR: 800LR over an unamplified 10km link with a 9dB link budget, and 800Gb/s “coherent lite” over an unamplified 1km link with a budget of 5.2dB, both using a low-latency FEC with a BER threshold at 4 x 10-3. The latter used self-homodyne coherent detection so as to significantly simplify the DSP and remove wavelength locking between transmitter and local oscillator.