NewHydrogen, Inc. announced that the Company recently entered into a research agreement with UC Santa Barbara to work with a team of world-class chemical and materials engineers to develop a better way to efficiently split water into cheap green hydrogen with a thermochemical approach, using heat instead of electricity. The gold standard for producing green hydrogen is through electrolysis by using electrolyzers with solar or wind electricity to split water into hydrogen and oxygen. Unfortunately, electricity, especially green electricity, is very expensive and will continue to be expensive.

In fact, electricity currently accounts for 73% of the cost of green hydrogen production. On the other hand, renewable heat from sources such as concentrated solar and geothermal can be very low cost. Often it's even free in the form of waste heat from sources such as nuclear power plants, and industrial processes for making steel, glass, ceramics, and many things use in everyday lives.

Green hydrogen is crucial in meeting the greenhouse gas emission goals described in the United Nations Paris Agreement. Solar, wind and batteries alone simply cannot be relied upon to decarbonize industries, such as aviation, maritime, steel, cement, fertilizers, oil refining and pharmaceuticals. The expected global drive towards "net-zero emission" by 2050 will create tremendous demand for green hydrogen for decades to come.

Goldman Sachs estimates a future market value of $12 trillion.